
CTIC HLL W

Naval Research Laboratory

NRL Memorandum Report 6359

Alternative Trace Axioms for the WHIELE Construct

C. B. CROSS

Formal Methods Section
Information Technology Division

0)
o) October 21, 1988

Approved for public release; distribution unlimited.

-L Z) 03:

SECURITY CLASSlF,CATION OF THIS PAGE
Form ApOproved

REPORT DOCUMENTATION PAGE INo 9704-01,98

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARY \15S

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION AVAILABIL T' OF REP'DP"

Approved for public release; distribution
2b OECLASSIFICATIONiOOWNGRAOING 5CHEOULE unlimited.

4 PERFORMING ORGANIZATION REPORT NuMBER(S) 5 MONITORING ORGANIZATON REPOR' N',BT'IS,

NRL Memorandum Report 6359

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGAN ZA7 ON
(If applicable)

Naval Research Laboratory I

6C. ADDRESS (City, State and ZIP Code) 7b ADDRESS (Ciry. Stare and ZIP Code)

Washington, DC 20375-5000

8a. NAME OF 'UNDING/SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT ENThFCA ,O% '.Bve
ORGANIZATION (If applicable)

Bc ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM I PROJECT -ASK ' ,T
ELEMENT NO NO NO CCSSO NO

1 TITLE (Include Security Classification)

Alternative Trace Axioms for the WHILE Construct

12 PERSONAL AUTHOR(S)

Cross, C.B.
13a TYPE OF REPORT 13b TIME c Vp 6/88 14 DATE O REPORT (YearMonrhr ay, 5 P-6E ,

FROM ____ TO 6/88 1988 October 21 14

16 SUP LEMENTARY NOTATION

17 COSATI CODES 1B SUBJECT TERMS Continue on reverse it necessary and idenrify oy block numoeri

FIELD GtOUP SUB-GROUP Logic Verification
Program semantics Trace specification

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

In NRL Report 9033 John McLean presents a programming language semantics, the extended trace

language, based on the trace specification language. The simple programming language discussed in NRL

Report 9033 contains the WHILE construct, and McLean gives this construct a natural and correct recursive

treament In&is report'C show-that it is possible to use the extended trace language to give the WHILE con-

struct two other quite different semantic treatments. One of these is based on the Hoare-style semantics for

WHILE; the second is an alternative to the recursive axiom that could be used in cases where the verifier can

discern at what point a given loop will terminate. It is significant that when using the extended trace

language a verifier of software can choose from several different but equivalent semantic treatments of

WHILE. Tb, ability to choose an axiom for WHILE that fits the problem at hand makes the extented trace

language an attractive software verification formalism.

20 DISTRIBUTION, AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFCATiON

(2 UNCLASSIFIEO/UNLIMITED [SAME AS RPT C DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c JF'cE S ME 80

Charles B. Cross
DD Form 1473, JUN 86 Previous editionsare obsolete SECARITY CLASS.F CA ©I ,\; "-,--.

S/N 0102-LF-014-6603

CONTENTS

1 The trace specification language .. 1

2 The extended trace specification language .. 2

3 The invariance while axiom ... 4

4 The precise count while axiom .. 6

5 Eqaivalence of the three axiom ... 8

A cknow ledgem ent .. 10

R eferences 10

1TIC

mm

-" YK'

Alternative Trace Axioms for the WHILE Construct

0 NE FAMILIAR AND TRIVIAL FACT about formal logic is that an inference may be easy
to derive in one proof system but difficult to derive in a second, equivalent system. It is

therefore not surprising that some programs are more difficult to prove correct using Hoare logic
than. for example, dynamic logic, and vice-versa. It would be good to have a single logic of
programs that made correctness proofs easy in all cases, but this is too much to hope for, since
any finite, reasonably rich axiomatic system will have theorems that can only be derived by means
of lengthy proofs. Still, one can hope to make a certain amount of progress toward the desired
end before encountering the point of diminishing marginal returns. "he usual area of difficulty in

any verification proof is proving that repetition constructs (such as loops and recursion) behave
as they were intended. In view of this, the present report focuses on different ways to handle the
archetypal loop construct: while.

In (6] John McLean presents a programming language semantics, the extended trace language,

based on the trace specification language described in (5]. The simple programming language
discussed in [6) contains the while construct, and McLean gives this construct a natural and
correct recursive treatment. In this report I will show that it is possible to use the extended trace
language to give the while construct two other quite different semantic treatments. One of these
is based on the Hoare-style semantics for while: the second is an alternative to the recursive
axiom that could be used in cases where the verifier can discern at what point a given loop will
terminate. It is significant that when using the extended trace language a verifier of software can
choose from several different but equivalent semantic treatments of while. The ability to choose
an axiom for while that fits the problem at hand makes the extended trace language an attractive
software verification formalism.

1 The trace specification language

The trace language provides for the specification of software modules in temis of the effects, such
as return-values, that the user sees when executing a sequence of procedure and function calls.

These sequences are called traces.
A trace specification consists of a synax section and a semantics section. The syntax section

states the name and parameter types of each of the module's procedures and the name, parameter
types, and return-value type of each of the module's function calls. The semantics section contains
axioms formalized in a many-sorted language of first-order logic with identity, with one set of
variables R, Rt, R2, ... S, St, S2 , ... T, Tt, T2,... to be understood as ranging over traces. In addition
to the usual logical connectives there is an interpreted binary function symbol (.), which serves as
a notation. f'r concatenating trace terms. If X is a trace variable, the empty trace e, a proceduru
call, or a function call, then X is a well-formed trace term; if X and Y are well-formed trace terms,
then (X.Y) is a well-formed trace term. Nothing else is a weli-formed -,ace term. A function
(procedure) call is a function (procedure) name followed by the requisite number of parameters
of appropriate types. In place of a formal axiom of associativity for concatenation I adopt the
convention of dropping the parentheses around the subterms of a trace term.

The axioms that appear in the semantics section of a trace specification state or entail infor-

mation about which traces are legal and about the values returned by legal traces that end with

Manuscript approved August 19. 1988.

FI

function calls. The legality predicate and the value function are usually formalized using the
unary predicate symbol L and the unary function symbol V, respectively. One additional and very
handy piece of notation is trace equivalence (-), defined as follows:1

S = T =d VR [(L(S.R) - L(T.R)) A (R A e - (3xV(S.R) = x - V(S.R) = V(T.R)))]

In other words, two traces are equivalent just in case they agree on (i) present and future legality,
and (ii) all future return values. Intuitively, two traces are equivalent provided that they place the
module in the same "state" as far as the user can tell.

2 The extended trace specification language

McLean's extended trace semantics is defined on a simple programming language that permits
variable assignment, sequencing, while do, and if then else. The extended trace language itself is
very much like the trace specification language, except that in addition to procedure call variables
R nd T, with and without subscripts, we have program statement variables S, with and without
subscripts. In addition, the value function V takes two arguments instead of one. The first
argument is a trace expression, the second a program variable or Boolean expression. McLean's
program semantics consists of a complete set of axioms and rules for first-order logic with identity
and functions, together with the following additional axioms:

1. V(S, c) = c, for constant c.

2. V(e, x) = 0, for any integer variable x.2

3. V(S.a := t, a) = V(S, t), for term t.

4. V(S, o'(a, b)) = o(V(S, a), V(S, b)), where o, is an arithmetical operation.

5. V(S, if(p, q)) -. if(V(S, p), V(S, q)), where af is a Boolean operation. 3

6. V(S.a := x, b) = V(S, b), unless (i) b is an expression containing a, (ii) b is an array variable whose
index is an expression containing a, or (iii) both a and b are array variables to the same array.

7. V(S, 0) = V(S, 0') - V(S, a(01) = V(S, a([l). where a is an array.

8. V(S, 0) A V(S, p) - V(S.a(0 := t, a([i) = V(S, a([), where a is an array.

9. V(S, 9) - V(S. if 0 then S, else S2 6, x) = V(S.S 1 , x), where x is a program variable or Boolean
expression and where '=' is understood as meaning '-' in the latter case.

10. -V(S, 9) - V(S. if 9 then S, else S2 , x) = V(S.S 2, x), where x is a program variable or Boolean
expression and where '=' is understood as meaning '-' in the latter case.

11. (acc(S, So, 7) A -V(T, 0)) - V(S. while 0 do So od, x) = V(S. ifO then while 0 do So od fi. x), where x
is a program variable or Boolean expression and with '=' understooi as meaning '-' in the latter
case.

12. V(S.skip, t -, V(S, t), for term t.

[61. p. 4.

'This axiom & that all numerical program variables are initialized to O.
'Not that if p is a formula or Boolean variable. then V(S, n) is a formula. - a 11'rn.

2

_

The acc predicate, which is useful for proving the correctness of programs, is defined by the
following equivalence:

acc(T,S,R) .- 3 nR = T.S",

where S" is a function that maps a trace and an integer to a trace and is defined by the following
axioms:

S"1 = S".S

So, a trace R is S-accessible to a trace T provided that R is the result of appending a finite number
of occurrences of S onto T. A related predicate that will come in handy later on is ext, defined
as follows:

ext(O, T, S, R) - lacc(T, S, R) A VX [acc(T, S, X) A acC(X, S. R)] - V(X. 0)]]

In other words, R is an S-accessible o-extension of T provided that R is S-accessible to T and o
is uniformly true over every prefix of R having the form T.S'.

In the programming language we are considering, a program fails to terminate only if one or
more of its while loops fails to terminate. So to prove that a program halts we need only prove
that its loops terminate. In general this will involve considering a trace of the form

R. while 0 do S od

and proving

3T(acc(R. S, 7) A - V(T, o)).

Unfortunately, our use of first-order logic greatly limits our ability to prove that programs ter-
minate. For example, let P be an extension of first-order logic containing the axioms of Peano
arithmetic and the axioms of the extended trace language, and consider the following program:

x:= z. whilex > 0 dox:= x - I od

In order to prove that this program terminates for values of z greater than 0, we need to prove
that P implies the following form-la:

Vz(z > 0 -- 3T(acc(x := z.x :=x - 1, 7) A -V(T,x > 0))).

But if ,M is a nonstandard mode: of arithmetic that satisfies the axioms of the extended trace
language, then M cannot satisfy Vz (z > 0 - 3T(acc(x := z. x := x - 1,7) A - V(T x > 0))), since
M cannot satisfy 3T(acc(x := z, x := x - 1, 7) A -'V(T. x > 0)) for nonstandard integer values of z.
Thus in many cases, some of them very simple cases, it will be impossible to prove termination
for a program that clearly does terminate. in [11 Apt makes this same point regarding Hoare
logic, and so, as with Hoare logic, the extended trace language is more useful for proving weak
correctness than for proving strong correctness.4

We will refer to Axiom 11 as the -'cursive axiom, since it associates a while statement with
an if-then-else statement that calls that same while statement again.

'A program is weakly correct just in case it is correct if it terminates- a program is strongly correct just in case it
is weakly correct and also terminazs.

3

3 The invariance while axiom

3.1 Hoare logic

The semantics of while in Hoare's logic, by contrast, depends on the idea of an invariant. The
standard while rule in Hoare logic is as follows:

{p A e}S{p}
{p} while e do S od {p A -,e}

Proving a program Si ; while e do 52 od partially correct with respect to a precondition p and
postcondition q normally involves skwing that S establishes an invariant r that S2 preserves.
This means that in order to prove {p} Si; while e doS 2 od {q} we must prove the following, for
some cleverly chosen r {p} SI, {r}, {r A e} 2 {r}, (r A -'e) - q. From the second of these
{r} while e do S2 od {r A -'e} follows by Hoare's while rule, and this, together with {p} S1. {r}
implies by the Composition Rule5 {p} S, whileedoS 2od {rA -'e}. This last formula, together with
(rA -'e) - q implies the target formula by the Consequence Rule:6 {p} S, ; whileedoS 2 od {q}.7

Consider, for example, the following program. which computes the factorial function for input
X*.

a:= 1;
b :=x.
while b # 0 do

a:= ab;
b := b - I od;

end

In order to prove this program (weakly) correct, we need to give a Hoare logic proof of the

following:

Proposition 1 {x> 0}a := 1;b := r, whileb#0doa = ab;b :=b- I od {a =x!}.

Proof: To prove this, according to the procedure described above, it suffices to prove each of
the following-

(1) {x> 0}a:= 1;b:=x{r}
(2) {rAb#0}a:=ab;b:=b- l{r}
(3) (rAb=0)-a=x!

for suitably chosen r. Let r be the formula a = x!/b!. Obviously (3) holds, since 0! = 1, so
consider (1): by the Assignment Axiom s and the Consequence Rule it follows that

{x > 0} a := I {x > OA a- x!/x!}

'[I], p. 433.
'[11, p. 434.
7See [1], pp. 433-436.
*I]l. p. 433.

4

holds. Also. again by the Assignment Axiom and the Consequence Rule, we have that

{X > O^ a = x!/x!} b:= x {a= x!/b!}.

Hence, using the Composition Rule, it follows that (1) holds, i.e. that

{x > 0} a:= 1. b := x {a = x!/b!}

holds. Finally, consider (2): we can use the Assignment Axiom and Consequence Rule to conclude
both

{ab=x!/(b- 1)'} a:=abfa=x!/(b- 1)!}
and

a a=x!/(b- I)!}b:=b- l{a=x!/b!},

from which it follows by the Composition Rule that

{ab=x!/(b- 1)!} a:= ab;b :=b- 1 {a x!/b!}

holds, from which it follows by the Consequence Rule that

{a = x!/b! A b # 0} a:= ab; b:= b - I {a =x!/b!}

holds, which is to say that (2) holds, as required. I

Let's refer to the program in the preceding example as the Factorial Program. For the sake
of the exposition, I will use it to illustrate the alternative semantic treatments of while presented
here.

9

3.2 The axiom of invariance for while
The extended trace language permits the formulation of a while axiom based on the idea of an
invariant:

[ac(TS,T)A-V(T, V)j - VR [[V(R,pA0)Aext(., T.S,R) - V(R.Sp)] -. V(T.p) - V(r. whleodoSodpA-0)

This axiom states that i the truth of the invariant p is preserved whenever S is executed on a
trace in which both p and the loop condition o hold and which is an S-accessible O-extension of
a trace T, then if p is true at T, then p is also true at T. while o do Sod, unless this loop does not
terminate.

Now let's prove the Factorial Program correct using the extended trace language (as modified
to include the axiom of invariance instead of the recursive while axiom). We wish to derive:

Proposition 2 3T7 [acc(a:= L.b := x, a := ab.b :=b - 1, T) A -V(7. b # 0)] - .x > 0 - .V(a:=
L.b := x. while b # 0 do a :=ab.b := b - od. a =x!).

Proof: In order to use the axiom of invariance, we need two lemmas. (We use the same invariant
as was used above in the Hoare logic correctness proof.) One of these lemmas is trivial, namely

(LI) x > 0 - V(a : L.b := x.a = x!a/b!),

9I will not here present an extended trace language correctness proof of the Factorial Program using the recursive

axiom for while, since McLean does this (using essentially the same specification) in [6].

which follows from extended trace language axioms 3, 4, and 5. The other lemma is this:

(2) x > 0 - .VR [[V(R,a = x!/b! A b # 0) A ext(b # 0,a := 1;b := x,a := ab;b := b - 1.R)] -
V(R.a := ab.b := b- 1,a = x!./b!).

Let R be given such that ext(b #0, a 1.b := x, a :=ab.b:= b - 1, R). It follows that

V(R, a = x!/b! A b # 0) =:P V(R, ab = x!/(b - 1)! A b # 0)
,V(R.a :=ab, a=x!/(b- 1)! A b > 1) by axioms 3,4,5;
> V(R.a := ab.b := b - 1,a = xI/b)! A b > 1) by axioms 3,4,5.

This completes the proof of (L2). (LI) and (L2), together with our hypothesis and the invariance
axiom imply:

3T'[acc(a := 1.b := x,a := ab.b := b- 1, *)A -V(T',b 0)1 - .x > 0 - .V(a := 1:b
r, whileb # 0 do a:= ab.b:= b - I od, a = x!/b A b = 0),

which by arithmetic implies the desired result, namely:

37'[acc(a := 1.b := x,a := ab.b := b- 1,7V)A -'V(T,b # 0)] - .x > 0 - .V(a := 1;b
r, while b # 0 do a:= ab.b:= b - I od, a = x!). I

Notice that, unlike the recursive semantics for while, this invariance-based semantic treatment
of while does not seem to require us to use mathematical induction to prove the correctness of
the Factorial Program.' 0 Like all good things, however, this feature must be paid for. we will
use induction to prove that the recursive axiom implies the invariance axiom (see Lemma 2 in
section 5 below).

4 The precise count while axiom

In this section we consider a third and somewhat different semantics for while.

[-'V(T.S, 0) A Vk [0 < k < n - V(T.Sk,)] - V(T. whileo do Sod. x) = V(T.S". x)

That is, if, starting at T, $ first becomes false after n iterations of S, then T.S" is simply equivalent
to T. while 0 do S od. Like the invariance axiom (and unlike the recursive axiom) the precise
count axiom has the following property: one must choose carefully which of its instances to use.
In particular, one must find or correctly guess how many times the loop will iterate in order to use
this axiom. In some cases where this is easy to guess, this axiom could make the proof somewhat
simpler. For illustration, consider once again the Factorial Program. We wish to prove:

Proposition 3 37' [acc(a := 1.b := x. a := ab.b := b - 1, T) A -V(T. b # 0)] - .x > 0 - .V(a:=
1; b:= r, while b # 0 do a:= ab.b:= b - I od, a) = x!.

Proof: Let 37 [acc(a := 1.b :=x,a := ab.b := b- 1, T), -V(T, b # 0), and x > 0 all hold. Let
R be the shortest r satisfying the first assumption, and let n be the number of iterations of the
loop a := ab.b := b - I in R. We will show that n = x, i.e. that x satisfies the hypothesis of the
precise count axiom.

101 conjecture that the recursive semantics in [61 does in fact require the use of induction. An examnation of

McLean's correctmnea proof on page 7 of [61 provides some evidence for this conjecture.

6

First we need to show that -V(a := l.b := x.(a := ab.b :=b - I)X, b P 0), i.e. V(a:= 1.b
x.(a := ab.b := b - 1),b) = 0. We show this by giving a proof by induction of the following
identity:

(3) V(a := .b := x.(a := ab.b := b - 1), b) = x - k.

Proof-of-(L3): Since V(a := L.b := x. b) = x. we have the basis case. Suppose that the identity
holds for k < m, and let k = m + 1. Then

V(a:= .b:= x.(a:= ab.b:= b - 1)"t , b) = V(a:= I.b:= x.(a := ab.b := b - 1)'.a := ab. b - 1) by axiom 3;
= V(a:= 1.b:= x.(a:= ab.b:= b - 1)', b - 1) by axiom 6;
= V(a:= l.b:= x.(a:= ab.b:= b - 1)", b) - I by axiom 4;
= (x - m) - 1 by inductive hypothesis;
= x - (m + 1) as required.

This completes the proof of (L3). Note that (3) implies:

V(a := L.b := x.(a := ab.b := b -), b) = x - x = 0,

which establishes the first conjunct of the antecedent of the precise count axiom. To establish the
second conjunct, we need to show:

Vk[0 < k < x - V(a := Lb:= x.(a := ab.b := b - I)k. b # 0)].

But this also follows from the (L3), since k < x implies x - k A 0.
Having established both conjurcts of the antecedent of the precise count axiom we now must

show that the following holds:

(U.,) 0 < y < x - V(a := l.b := x.(a := ab.b :-= b - 1)Y, a) = x!/(x - y)!.

Proof-of-(L4): Again we proceed by induction. Assume 0 < y < x. Clearly V(a := l.b
x, a) = I = x!/(x - 0)!, so the basis case holds. Now suppose (L4) holds for y < k, and consider
the case where y = k+ I. We reason as follows: we have V(a := L.b := x.(a := ab.b:= b- I)k., a) =
x!/(x- k)! by the inductive hypothesis, and V(a := L.b := x.(a := ab.b := b - 1)', b) = x - k
by (12). Thus V(a := L.b := x.(a := ab.b := b- 1)k a = x!/(x- k)!). which in turn implies
V(a := 1.b := x.(a := ab.b := b-)k, ab = [x!/(x - k)!](x - k)) oy axioms 4 and 5. This implies
that V(a := L.b := x.(a := ab.b := b - 1), ab = x!/(x - (k + 1)!) holds, since x > k. which holds
because x > y = k + 1. Thus V(a := L.b := x.(a := ab.b :=b- 1)t, ab) = x!/(x - (k.- 1))! holds,
which implies by axiom 3 that V(a := L.b := x.(a := ab.b := b - 1)k.a := ab. a) = x!/(x - (k+ 1))!
holds. Consequently we have

V(a:= 1.b:= x.(a:= ab.b:= b - l)*' , a) = V(a:= l.b:= x.(a := ab.b:= b - l)k.a:= ab.b:= b - 1. a)
= V(a := l.b:= x.(a := ab.b := b - l)*.a := ab. a) by axiom 6;
= x!l(x - (k + I))!,

as required. This completes the proof of (L4). Now, at last, we can derive our main conclusion
using the precise count axiom itself.

V(a:= L.b := x. while b A 0 do a := ab.b:= b - I od, a) = V(a:= L.b:= x.(a := ab.b:= b - 1)" a)
= x! by (L4)

This completes our correctness proof for the Factorial Program using the precise count axiom. |

7

5 Equivalence of the three axioms

As one would hope, we can prove that our three trace axioms for the while construct are equivalent.
The three axioms, once again, are as follows:

(a) [-V(T.S, 4) A vkCO < k< n - V(T.S, 0) - V(T. while 4 du S od, x) = V(T.S, x)

(b) (aCC(S, SoT') A -V(T, 0)) - V(. WI0 (do So od, x) = V(S. It 0 then So. whilie do So od i, x)

(c) [(ac(T, S, T)A--V(T, 0)] - .VR [(V(R, pAQ)Aext(o, T, S, R)J - V(R.S, p)] - .V(T, p) - V(T. whileodoSod p^

where x is a program variable or Boolean expression, with '=' understood as meaning - in the

latter case. The first lemma we need is:

Lemma 1 Axiom (a), the precise count axiom, implies Axiom (b), the recursive axiom.

Proof: Suppose that (a) holds and suppose that acc(S, So,) A -,V(7, ,) holds. By the definition
of acc, let n be the smallest n' such that n' > OA - V(T.S" ' o) holds. Hence V(T. whileodoSod, x) =

V(T.S4, x). There are two cases.

Case 1: If n = 0, then - V(T, 0) holds, and we also have

V(T. while 0 do S od, x) = V(T, x) by Axiom (a);
= V(if0thenS.whilepdoSod fix) by Axiom 10;

Case 2: If n > 0, then we have V(T, P); note that n - I is the smallest n' such that n >
0 A -, V(T.S.S ",p) holds. This gives us

V(T. while odoSodx) = V(T.S.S"'-1,x) by Axiom (a);
= V(T.S. while o do Sod by Axiom (a);
= V(T. if 6 then S. whileo do Sod fi. x) by Axiom 9.

So in either case, V(T. while o do S od. x) = V(T. if o then S. while o do S od fi, x), as required. I

Lemma 2 Axiom (b) implies Axiom (c), the invariance axiom.

Proof: Suppose that (b) holds and suppose that

(i) ace(T, S, V') A -, V(I', 0)

(ii) VR [[V(R,p A 0) A ext(O, T, S, R)J - V(R.S.p)], and

Oi) V(T,p)

also hold. We need to show that V(T. while (P doSod .p A -P) holds, as well. By the definition
of acc we know that 3W (n' > 0 A ,V(T.Sw, o)]. Let n be the smallest such n'. The proof will be
by induction on the value of n.

Basis Case: Let n = 0. Hence -' V(T, 0) holds, and so

V(T. while 6 do S od, p A -) V(T. if o then S. while 6 do S od f. p A -o by (a);
4== V(T.skip, p A -P) by axiom 10:
- V(T. p A -o) by axiom 12,

but V(T.p A -'P) is true by hypothesis, so V(T. while o do S od .p A -0o) is true, as required.

8

Inductive Step: Suppose that Axiom (b) implies Axiom (c) for all values k such that 0 < k < n,
where n > 0. We show that this implication holds for n + 1, as well.

Since n > 0, we know that V(T,4) holds, which together with (iii) implies that V(T.p A 0)
holds. Since, in addition, we know that acc(T, S, T), it follows by (ii) that V(T.S, o) holds. Since
n > 0 we also know that acc(T.S, S, 7) holds, too. In particular, n is the smallest n' such that
n' > 0 A - V(T.S.S , p)

Note that (ii) implies VR [[V(R,p A k) A ext(o, T.S, S, R)] - V(R.S,p)]. Since V(T, o) and
V(T.p) both hold, it also follows from (ii) that V(T.S,p) holds.

Thus we have

V(T. while 6 do S od, p A -0) V(T. if then S. while P do S od fi p A -'0) by (a);
-= Vcr.S. while 0 do S od, p A -o) by axiom 9;

but, by the inductive hypothesis, V(T.S. while 6 do S od , p A -(D) is true, since acc(T.S. S, 7) A
- V(T, o), VR [(V(R,p A D) A ext(o, T.S, S, R)J - V(R.Sp)], and V(T.S.p) all hold. Hence

V(T. while o do S od, p A -o)

holds as required. I

Lemma 3 Axiom (c) implies Axiom (a)

P oof: Suppose that (c) holds, and let n be such that - V(T.S, 6) A Vk[0 < k < n -
V(T.Sk ,)] holds. Let y = V(T.S", x), and let p be the formula D V x = y. We will show
that V(T. while o do Sod. x) = y by first showing V(T. while (do S od ,p A -o), and to show
this it suffices (by axiom (c)) to show that (i) [acc(T, S. T) A -,V(7, o)], (ii) VR [V(R. (o V x =
y) A 6) A ext(p, T, S, R)] - V(R.S, (0 V x = y))], and (iii) V(T, (0 V x = y)). Now. (i) and (iii) follow
straightforwardly from our hypothesis. Let us then examine (ii).

Let R be such that V(R, (6 v x = y) A o) A ext(6, T. S, R). Since o entails (o V x = y), this is
equivalent to V(R, b) A ext(O. T, S, R). It follows that R has the form T.Sk for some k such that
0 < k < n, since otherwise (by hypothesis) o would not be uniformly true over the S-extensions
of T that are prefixes of R. There are two cases:

Cas-:: If k = n - I. then by hypothesis

V(R.S, (0 V x - y)) -4 V(T.S "- I.S, (p v x = y))

V(T.S". (, V x = y)),

but V(T. ", (p v x = y)) is true, since V(T.S", x = y) holds, and so V(R.S. (o V x = v)) is true, as
well.

Case 2: If k < n - 1, then V(T.S t - ', o) holds, since k + I < n, and
V(R.S,(Ovx=y)) - V(T.SS.(ovx=y))

= V(T.Sk* t , (p V x = y)),

but V(T.S t ', (0 V x = y)) is true, !,.nce V(T.S * 4. o) holds, and so V(R.S, (o v x = y)) is true, as
well.

This suff ses to establish (ii), and hence, by (c), (i), (ii), and (iii) we have V(T. whileodoSod. (ov
x = y) A -,6), which implies V(T. while o do Sod, x = y), which implies V(T. while o do Sod. x) =
V(T.S", x), as required. I

Theorem I Axioms (a), (b), and (c) are equivalent.

Proof: By Lemmas 1, 2, 3. I

9

Acknowledgement

I am grateful to John McLean for reading and providing cormnents on the penullumate draft of
this report.

References

[1) Apt, Krzysztof R., "Ten Years of Hoatre's Logic: A Survey," ACM Transactions on Programrrung
Languages and Systems 3: 431-483, October 1981.

[2] de Bakker, Jaco, Mathematical Theory of Program Correctness, Englewood Cliffs: Prentice-Hall,
1980.

[3] Gabbay, Dov and Franz Guenthner (eds.), Handbook of Philosophical Logic, vol. 2. Dordrecht: D.
Reidel, 1984.

[4] Hazel, David. "Dynamic Logic," in [3], pp. 497-604.

[5] McLean. John, "A Formal Method for the Abstract Specificauon of Software." Journal of the ACM
31: 600-627, July 1984.

[6] McLean. John, "Using Trace Specificauons for Program Semantics and Venficauon," NRL Report
9033, Naval Research Laboratory, Washington, D.C., 1987.

10

